PHYSICAL REVIEW E, VOLUME 65, 046219
Rotating convection in an anisotropic system
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We study the stability of patterns arising in rotating convection in weakly anisotropic systems using a
modified Swift-Hohenberg equation. The anisotropy, either an endogenous characteristic of the system or
induced by external forcing, can stabilize periodic rolls in theopers-Lortz chaotic regime. We apply this to
the particular case of rotating convection with time-modulated rotation where recently, in experiment, spiral
and target patterns have been observed in otherwiggpéds-Lortz-unstable regimes. We show how the
underlying base flow breaks the isotropy, thereby affecting the linear growth rate of convection rolls in such a
way as to stabilize spirals and targets. Throughout we compare analytical results to numerical simulations of
the Swift-Hohenberg equation.

DOI: 10.1103/PhysRevE.65.046219 PACS nunid)erd7.54:+r, 47.52+j, 05.45.Jn, 47.20.Bp

[. INTRODUCTION investigate here the effect of anisotropy on roll patterns in
systems exhibiting KL chaos.

Pattern formation in thermal convection of a rotating fluid ~ Within the framework of a suitably extended Swift-
layer has been the subject of much experimental and theoretiohenberg SH) model we first study the stability of straight
ical work in recent years. The effect of the Coriolis force onrolls in systems with broken chiral symmetfyodeling the
the dynamics of thermal instabilities makes this system relCoriolis force due to rotationand with weak anisotropy. We
evant for both astrophysical and geophysical fluid dynamicsthén use these analytical results to interpret simulations of
while the appearance of spatiotemporally chaotic dynamicis SH model in a cylindrical geometry in which we obtain
near onset make it an attractive candidate for detailed and@'9€t and spiral patterns as seen in experiment.
lytical and numerical investigations of the origin and behav-
ior of chaotic complex patterns. Il. THE STABILITY OF ROLLS WITH ANISOTROPY

Kuppers and Lort41] determined that for rotation rates ) .
We study the effect of weak anisotropy on thepgers-

greater than a critical valu€)>(),, steady convective roll i the followi dified Swift-Hohenb
patterns are unstable to another set of rolls oriented at an2rtz state in the following modifie wift-rohenberg

anglep relative to the first. These results were confirmed andﬂOdeI:
extended by Clever and Buspg2] who also determined the

dependence df., andg on the Prandtl number of the fluid. dup= i+ a¥(n-V)29—(V2+1)2p—§°
In an infinite system, these dynamics are persistent due to . )
isotropy. Busse and Heikd8] used this fact and the close- +oyk-[VXL(V§) V], @

ness ofB to 7/3 to derive three coupled amplitude equations,

in which rolls switch cyclically as they approach a hetero-wheren is a director indicating the preferred orientation, and
clinic orbit. In real systems, small-amplitude noise perturbsy gives the strength of this anisotropy. We retain the up-
this orbit, leading to nearly periodic switching of rolls. In down (Boussinesfjsymmetry ¢— — ) by including only

sufficiently large systems the switching becomes incohererddd terms iny, and include a nonlinear gradient term that
in space and causes the development of patches of rolls witbreaks the chiral symmetry. The rotation rate is therefore
different orientations. The ensuing dynamics are chaotieneasured byy. Similar models have been systematically de-
[4,5]. rived from the fluid equations, with7] and without[8,9]

In recent experiments on rotating convectj@h, Thomp- mean flow effects, and have enjoyed widespread use, e.g.,
son, Bajaj, and Ahlers investigated the effect of a temporal10—13. We mean(1) to be a model equation and are con-
modulation of the rotation rate on the [pers-Lortz(KL)  cerned with thequalitative effect of anisotropy on the
state. They found that for sufficiently large modulation con-Kuppers-Lortz instability.
centric roll patterngtargets as well as multiarmed spirals Focusing on the weakly nonlinear regime and assuming
can be stabilized and replace the chaotic KL state. Focusintiie anisotropy to be weak, we take=e€’u, and a=ea,
on the target pattern, they found that the rolls in these patwith e<1. To leading order ine the system is therefore
terns drift radially inward and they measured the dependendsotropic. To study the effect of the anisotropy on the KL
of the drift velocity on modulation amplitude and frequency, instability we consider the weakly nonlinear competition of
mean rotation rate, and heating. They point out that théwo sets of rolls with relative anglg with the ansatz,
modulation sets up an oscillatory azimuthal mean flow,

Which tend_s to align rolls glpng.that Qirec_:tion. Since .the = e(A(7)e/[cosOX+sNOY] | B 1) gilcos(v+p)x+sin(o+B)Y]
alignment singles out a specific orientation, it breaks the isot-
ropy of the system. Motivated by these findings we therefore +c.c)+ (higher-order terms 2
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Thus here we do not analyze all sideband instabilities. To [ ' ' '
leading order the system is isotropic afids a free param- 12k ! |
eter. The complex amplitude& and B evolve on the slow No Roll. ,-' No Roll.
i N o Rolls i o Rolls
time scaler= et. For concreteness we take=eg,. At order 1 !
€%, a solvability condition yields 0k ! i
. o | !
3,A= u,A— a? sirf(9)A—3|A|?A— (6 06 ]
+4ysing cosp)|B|?A, €) o4l y ]
9,B=u,B— a?sird(9+ 8)B—3|B|2B— (6 0,2'___;;—";1 . 1= S
- nstable Rolls
—4ysing cosB)|A|?B. (4) 045 wr s s 3

We examine the stability of rolls of orientation étwith
respect to a set of rolls orientg@l to the first set of rolls. FIG. 1. Linear stability diagram of rolls with orientatiof in
With =0 (isotropic casg the absolute orientation of the Eqs.(3),(4) with respect to rolls at a relative orientation f, .
rolls @ is irrelevant, and we find they first become unstable toHere 1 =0.2. Numerical results are given by the solid symbols:

rolls with orientation triangles fory=3 and circles fory=2.

BkL=45° (5 weakly nonlinear analysis for rotation ratgshat are not too
¢ far aboveyg (a)~1.5, for which only weak anisotropy is
or needed for stability. For larger rotation ratgsthe weakly

nonlinear theory overestimates the amount of anisotrepy
needed to stabilize rolls. Fer=0(1) the anisotropy affects
the linear growth rate of rolls already in E@l) and will

Introducinge# 0 leads to a dependence of bggh, and introduce a significant dependence of the critical wave num-
L ber on the orientatiord. Numerical results for larges re-

vkL On the obsolute orientation of the rols The growth ; . -
rates of the perturbations are given by yeal that Ia_rge-amphtude roligvith 070) te_nd to grow.and
invade regions of rolls of other orientations frontwise. In
oa=—2(up— a?sirth), (7) fact, fora—eo only rolls with 6=0 e_>_<ist. o .
Thus, weak anisotropy can stabilize periodic rolls arising
in rotating convection in the Kapers-Lortz unstable regime.
Specifically, there is a finite band of anglésvith respect to
+[§ysinB cosp—2]sir’6). (8)  the anisotropic directon such that rolls with this angle are
. . stable to homogeneous perturbations of all possible orienta-
As can be seen from E(7) the anisotropy has shifted the {jons (see Fig. 2
onset of rolls with orientatiord to

w

Y=YKL= 5 (6)

N

o= to( — 1+ 4y sinBcosB) — a(sirto+ B

(?9) = a2 s 9) IIl. MODULATED ROTATING CONVECTION:
M2 2 . SPIRALS AND TARGETS

Thus rolls with orientationd exist for u,> uoc (). For We now turn to the specific problem of rotating convec-
fixed u this implies a neutral curver(¢) as shown by the tion with periodically modulated rotation. A thin layer of
dashed line in Fig. 1. Rolls of orientatiof first become  f|yid of heightd is heated from below and bounded above
unstable to rolls of different orientation at and below by a rigid plate, which is rotated with an angular
velocity Q=0,(1+ §coswt). For 6=0 we recover the

:%: well-studied case of rotating convectiph—7,10,11,14 For

B 6<1 but nonzero, a nontrivial base flow is induced by the

Equation(10) must be solved numerically for the linear periodic motion of the rigid plates. This flow advects pertur-
stability limits. Results are given in Fig. 1 for various valuesbations leading to thermal instabilities in such a way as to
of y (solid lineg. To test these stability results we perform affect their growth rate. Indeed, far from the axis of rotation,
numerical simulations using a pseudospectral code with pahe onset of the thermal instability is dependent on the ori-
riodic boundary conditions, employing an integrating factorentation of the periodic-roll perturbations with respect to the
Runge-Kutta time-stepping method. We perturb straight rolldase flow in a manner analogous to the linear operator in Eq.
of orientation # by small-amplitude rolls of orientatio (1) as discussed beloyef. [15]). Closer to the axis of rota-
+ B, where 8 is chosen as the angle corresponding to thdion, the curvature of the base flow becomes significant and a
maximal growth rate according to E(L0). To verify that no  straight-roll approximation is not a good one.
additional instabilities are present, we also perturb the rolls The dynamics can be described by the Boussinesq fluid
with small-amplitude noise. As can be seen from the solidequations in a frame rotating at the mean angular veldeity
symbols in Fig. 1, numerical simulations agree well with the[1-5]. Due to the temporal modulation of the angular veloc-

(10

0
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] i where the plates are locatedzat 0,1, k=\w/2(1+i) and
' ' | | . d v 20002
\1&“"‘ W\ 1 Up=Up—, Pr=—, 7=—". (13)
WIS Cooe
! 4 L "y, %
.t l,_;..:‘\,‘ \‘1 3 L Here the modulation frequeney has been nondimensional-
\ .,."'s."\_ : ized with respect to the viscous diffusion time. Note that Eq.

: "-..:‘-.
"-..1':‘2.\\ ,\'-;"I y ) oy (12) satisfies the equation of continui¥-u=0.

o,
y § Thermal instabilities arising from the imposed tempera-
(1)
F
¥
i

e
b
\ It l 1 \., ture gradient are advected by EG2) and hence parametri-
1 cally forced with frequency Ro. To model the change in
'[ their growth rates within the SH equati¢t) we consider the
\ s i region away from the center of rotation where curvature ef-
i 1 ! | fects can be neglected. There, to a good approximation the
l ! i "" ,i",‘ \ analysis of Sec. Il should apply locally with the anisotropy
‘ ] |

directorn being given by the local orientation of the oscil-

lating base flown=¢,. This is based on the observation that
near onset the dynamics of the instability is slow compared
with the period of the oscillating shear flow for any finite
rotation rate, which allows an averaging over the oscilla-
tions. Since the forcing is invariant under the transformation
6——96, t—t+x/Pro the base flow affects the growth
rate of thermal instabilities through mean-squared contribu-
tions (proportional to6%). Based on Eq(12) we therefore
choose

a?=5%2? n=e,. (14

We note that the scaling of the anisotro(®4) as linear in
the distance from the axis of rotation is correct only far from
the axis itself. However, we retain this simplified form for all

r and hope to extract qualitatively correct results. In fact,
simulations with other polynomial dependencies have re-
vealed that only the monotonicity of the function is impor-
tant in determining qualitative features of the patterns.

FIG. 2. Stabilization of rolls in the regime of domain chaos 10 model the circular container of the experiments we use
arising from the Kippers-Lortz instability(a) A typical patchwork @ circular ramp in the control parameter maintaining the
pattern of domain chaos, where the angle between patéhes region surrounding the circle at a subcritical value, thereby
=45°, andy=2.0, »=0.2, «=0.0. (b) For the same values of the suppressing the convection amplitude. In full Navier-Stokes
parameters witlw?>=0.15, rolls are stabilized. simulations this procedure has been used successfully in
comparison with experimeip.6]. Simulations reveal a wide

ity, the rigid boundary conditions at the top and bottom im-variety of spiral patterns as well as targets. For sndall

ply that the azimuthal velocity component oscillates in timewhere we expect the weakly nonlinear theory for periodic
with the plates, rolls to be valid sufficiently far from the core of the spiral,

we are able to predict the number of spiral arms with reason-
able accuracycf. Figs. 3 and 4 Such an analysis can be
understood from Fig. 1. For a fixed rotation raje the

. o . strength of anisotropyr increases with distance from the
This (_:ond|t|on md_uce_s an azimuthal she_ar flow, the strengtl&ore of the spiral. There is thus a region in the vicinity of the
of Wh'Ch grows with d'sct"’?”"e from the axis Of ey t_he core where no rolls are stable, and rolls of a given orientation
flow is restricted to a finite geometry, Coriolis forces acting ¢* become stable first at a distanck as determined by

on this flow can be balanced by the radial pressure gradiel?,Ivcmdition(10). The projection of the local wave vector of the

(b)

u,=Re(8Qre' Y. (11

as ;V'thf the fﬁntrlfyga; fO[C? h di ionalized f spiral onto the perimeter of the critical circle with radius
tak arthrorP € axis of rotation the nondimensionalized Tow;g given byqg sing*. The number of arms of the spiral is then
akes the form given by the circumference divided by the wavelength asso-

) ) ciated with the projected wave vector,
sinhkz—sinhk(z—1)
e

i Prot
2 sinhk (12

Ug=oPrr Re( N=r*qsing*. (15)
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(c)

FIG. 4. A stable spiral with a chaotic core. The system size is
FIG. 3. Representative patterns) KL state with §=0.0; (b) L =144 with y=2.0, ©=0.2, and6*=0.0001. Note that Eq15)
six-armed spiral for§=0.0005 Eq.(15) predicts six arms in this predicts 14 arms. The core dynamics occur on a fast time scale with
case;(c) Target pattern fo=0.001. For all threey=2.0, ©u=0.2, respect to the slow, solid-body rotation of the outer spiral. For a
and the system size=72. movie see Ref[27].
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Spirals or targets can be generated for the same parametgems to hold both under experimental conditions and here.
values given different initial conditions. In general, an initial Targets, on the other hand, must be generated with care, but
straight-roll pattern will result in a target for sufficiently then persist as stable patterns over a wide range of parameter
large 8, whereas disordered initial conditions generically values.
yield spirals, even for strong anisotropy. The target patterns observed[B) travel inward radially,

Interestingly, the orientation-selection mechanism givercollapsing periodically at the center. The origin of this drift
by Eqg. (15 predicts the possibility of a large region sur- has not been identified yet. One possibility is that the time-
rounding the core within which no rolls are stable in the periodic component of the Coriolis force acting on the time-
context of the weakly nonlinear theory. If the anisotropy isperiodic azimuthal flow generates a radial flow with a steady
sufficiently weak, one should see a disordered region of doeomponent, which would advect the axisymmetric roll pat-
main chaos, bounded by a stable spiral, given a large enoughrn [20,21). Another possibility is that the drift is due to a
system. Such a pattern is shown in Fig. 4. A movie of thesenismatch between the wave number selected by the umbili-

dynamics is available—see RéR7]. cus[22] and that selected by the container sidevf28,24.
The competing selected wave numbers set up a wave number
IV. CONCLUSION gradient that induces a drift of the pattd@b,26. It should

] L o _ be possible to distinguish between these two mechanisms by
Spirals and targets arising in Rayleigh#ied convection  comparing the dynamics in systems of different aspect ratio.
have been the subject of much theory and experimentator |arger systems, the wave number gradient induced by the
work, [7,4,11,17-19 Target patterns in low-Prandtl-number incompatibility of the selected wave numbers would be
convection are a consequence of horizontal, thermal gradiyeakened, while the effective strength of the radial flow
ents at the sidewalls of a cylindrical container, which tend toygyid naturally be stronger due to the greater Coriolis force
align rolls parallel to the walls19]. Even with sidewall forc- gt |arger radii. Experiments in such larger systems would
ing, the targets become unstable to straight rolls relatively|so be of interest in view of the prediction that in such
close to threshold. In rotating convection, the target patterngystems the core of the spirals would exhibit chaotic dynam-
arising from such sidewall forcing undergo a mean dfift]  jcs of the Kippers-Lortz type.

due to the breaking of reflection symmetry by the applied | our simulations of Eq(1) no radial drift of the concen-

rotation. However, in the case of rotating convection with agyic rolls was found. This is not unexpected since in the ab-
modulated rotation rate, the chiral patterns are not a consegnce of the chiral-symmetry-breaking term proportional to
quence of the system geometry, but rather are induced by apgq (1) is variational and persistent dynamics are ruled out.
isotropy-breaking shear flow, which acts azimuthally. WeTq obtain drift the variational character of the system has to
have shown that thfese patterns are _stable in regimes Wheg@ proken to a sufficient degree. This may require much
one would see spatiotemporal chaos in the absence of modygger rotation rates or the introduction of additional non-

lation. Our analysis indicates that the shear flow acts to stayariational terms. We have not pursued this further since
bilize rolls within a band of stable orientations with respectgjmylations of extensions of E6l) with possibly also modi-

to the azimuthal flow itself. This leads naturally to a chiral fjgq boundary conditions would not allow any quantitative

pattern. comparison with experiments and would therefore be of lim-

The qualitative agreement between the types of patterngeq yse in identifying the dominant mechanism responsible
observed in experimeii6] and those studied here makes thegy the drift.

selection mechanism described in Sec. Il plausible. Spirals
and targets arise through the interaction of the destabilizing
process responsible for the KL instability and the stabilizing
effect of the azimuthal mean flow. Quantitative comparison We wish to acknowledge helpful discussions with Guenter
of the dependence of the pattern behavior on the reducefhlers, Vadim Moroz, and Werner Pesch. This work was
Rayleigh number, rotation rate, and amplitude and frequencgupported by the Engineering Research Program of the Of-
of the modulation with experiment is, however, not possiblefice of Basic Energy Sciences at the Department of Energy
within the framework of Eq(1). However, qualitatively the (Grant No. DE-FG02-92ER143D3by a grant from the NSF
genericness of the appearance of spiral patterns under mod{Grant No. DMS-9804673 and by NSF-IGERT through
lated rotation with disordered initial condition&L state Grant No. DGE-9987577.
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