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Rotating convection in an anisotropic system
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~Received 17 October 2001; published 5 April 2002!

We study the stability of patterns arising in rotating convection in weakly anisotropic systems using a
modified Swift-Hohenberg equation. The anisotropy, either an endogenous characteristic of the system or
induced by external forcing, can stabilize periodic rolls in the Ku¨ppers-Lortz chaotic regime. We apply this to
the particular case of rotating convection with time-modulated rotation where recently, in experiment, spiral
and target patterns have been observed in otherwise Ku¨ppers-Lortz-unstable regimes. We show how the
underlying base flow breaks the isotropy, thereby affecting the linear growth rate of convection rolls in such a
way as to stabilize spirals and targets. Throughout we compare analytical results to numerical simulations of
the Swift-Hohenberg equation.
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I. INTRODUCTION

Pattern formation in thermal convection of a rotating flu
layer has been the subject of much experimental and the
ical work in recent years. The effect of the Coriolis force
the dynamics of thermal instabilities makes this system
evant for both astrophysical and geophysical fluid dynam
while the appearance of spatiotemporally chaotic dynam
near onset make it an attractive candidate for detailed a
lytical and numerical investigations of the origin and beha
ior of chaotic complex patterns.

Küppers and Lortz@1# determined that for rotation rate
greater than a critical value,V.Vcr, steady convective rol
patterns are unstable to another set of rolls oriented a
angleb relative to the first. These results were confirmed a
extended by Clever and Busse@2# who also determined the
dependence ofVcr andb on the Prandtl number of the fluid
In an infinite system, these dynamics are persistent du
isotropy. Busse and Heikes@3# used this fact and the close
ness ofb to p/3 to derive three coupled amplitude equation
in which rolls switch cyclically as they approach a hete
clinic orbit. In real systems, small-amplitude noise pertu
this orbit, leading to nearly periodic switching of rolls. I
sufficiently large systems the switching becomes incohe
in space and causes the development of patches of rolls
different orientations. The ensuing dynamics are cha
@4,5#.

In recent experiments on rotating convection@6#, Thomp-
son, Bajaj, and Ahlers investigated the effect of a tempo
modulation of the rotation rate on the Ku¨ppers-Lortz~KL !
state. They found that for sufficiently large modulation co
centric roll patterns~targets! as well as multiarmed spiral
can be stabilized and replace the chaotic KL state. Focu
on the target pattern, they found that the rolls in these p
terns drift radially inward and they measured the depende
of the drift velocity on modulation amplitude and frequenc
mean rotation rate, and heating. They point out that
modulation sets up an oscillatory azimuthal mean flo
which tends to align rolls along that direction. Since t
alignment singles out a specific orientation, it breaks the is
ropy of the system. Motivated by these findings we theref
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investigate here the effect of anisotropy on roll patterns
systems exhibiting KL chaos.

Within the framework of a suitably extended Swif
Hohenberg~SH! model we first study the stability of straigh
rolls in systems with broken chiral symmetry~modeling the
Coriolis force due to rotation! and with weak anisotropy. We
then use these analytical results to interpret simulations
this SH model in a cylindrical geometry in which we obta
target and spiral patterns as seen in experiment.

II. THE STABILITY OF ROLLS WITH ANISOTROPY

We study the effect of weak anisotropy on the Ku¨ppers-
Lortz state in the following modified Swift-Hohenber
model:

] tc5mc1a2~ n̂•“ !2c2~¹211!2c2c3

1g k̂•@“3@~“c!2
“c##, ~1!

wheren̂ is a director indicating the preferred orientation, a
a gives the strength of this anisotropy. We retain the u
down ~Boussinesq! symmetry (c→2c) by including only
odd terms inc, and include a nonlinear gradient term th
breaks the chiral symmetry. The rotation rate is theref
measured byg. Similar models have been systematically d
rived from the fluid equations, with@7# and without @8,9#
mean flow effects, and have enjoyed widespread use,
@10–13#. We mean~1! to be a model equation and are co
cerned with thequalitative effect of anisotropy on the
Küppers-Lortz instability.

Focusing on the weakly nonlinear regime and assum
the anisotropy to be weak, we takem5e2m2 and a5ea2
with e!1. To leading order ine the system is therefore
isotropic. To study the effect of the anisotropy on the K
instability we consider the weakly nonlinear competition
two sets of rolls with relative angleb with the ansatz,

c5e„A~t!ei [cos(u)x1sin(u)y]1B~t!ei [cos(u1b)x1sin(u1b)y]

1c.c.…1~higher-order terms!. ~2!
©2002 The American Physical Society19-1



T

e
t

e

r
es
m
p

to
ol

th

ol
li

he

y

m-

In

ng
.

e
nta-

c-
f
ve
lar

he
r-
to
n,

ori-
he
Eq.

d a

uid

c-

ls:

ALEX ROXIN AND HERMANN RIECKE PHYSICAL REVIEW E 65 046219
Thus here we do not analyze all sideband instabilities.
leading order the system is isotropic andu is a free param-
eter. The complex amplitudesA and B evolve on the slow
time scalet5et. For concreteness we taken̂5êy . At order
e3, a solvability condition yields

]tA5m2A2a2 sin2~u!A23uAu2A2~6

14g sinb cosb!uBu2A, ~3!

]tB5m2B2a2 sin2~u1b!B23uBu2B2~6

24g sinb cosb!uAu2B. ~4!

We examine the stability of rolls of orientation atu with
respect to a set of rolls orientedb to the first set of rolls.
With a50 ~isotropic case!, the absolute orientation of th
rolls u is irrelevant, and we find they first become unstable
rolls with orientation

bKL545 ° ~5!

for

g>gKL5
3

2
. ~6!

Introducinga5” 0 leads to a dependence of bothbKL and
gKL on the obsolute orientation of the rollsu. The growth
rates of the perturbations are given by

sA522~m22a2 sin2u!, ~7!

sB5m2~211 4
3 g sinb cosb!2a~sin2u1b

1@ 4
3 g sinb cosb22#sin2u!. ~8!

As can be seen from Eq.~7! the anisotropy has shifted th
onset of rolls with orientationu to

m2~ û !5a2
2 sin2û. ~9!

Thus rolls with orientationu exist for m2.m2cr(u). For
fixed m this implies a neutral curvea(u) as shown by the
dashed line in Fig. 1. Rolls of orientationu first become
unstable to rolls of different orientation at

sB5
]sB

]b
50. ~10!

Equation~10! must be solved numerically for the linea
stability limits. Results are given in Fig. 1 for various valu
of g ~solid lines!. To test these stability results we perfor
numerical simulations using a pseudospectral code with
riodic boundary conditions, employing an integrating fac
Runge-Kutta time-stepping method. We perturb straight r
of orientation u by small-amplitude rolls of orientationu
1b, whereb is chosen as the angle corresponding to
maximal growth rate according to Eq.~10!. To verify that no
additional instabilities are present, we also perturb the r
with small-amplitude noise. As can be seen from the so
symbols in Fig. 1, numerical simulations agree well with t
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weakly nonlinear analysis for rotation ratesg that are not too
far abovegKL(a);1.5, for which only weak anisotropy is
needed for stability. For larger rotation ratesg, the weakly
nonlinear theory overestimates the amount of anisotropa
needed to stabilize rolls. Fora5O(1) the anisotropy affects
the linear growth rate of rolls already in Eq.~1! and will
introduce a significant dependence of the critical wave nu
ber on the orientationu. Numerical results for largera re-
veal that large-amplitude rolls~with u50! tend to grow and
invade regions of rolls of other orientations frontwise.
fact, for a→` only rolls with u50 exist.

Thus, weak anisotropy can stabilize periodic rolls arisi
in rotating convection in the Ku¨ppers-Lortz unstable regime
Specifically, there is a finite band of anglesu with respect to
the anisotropic directorn̂ such that rolls with this angle ar
stable to homogeneous perturbations of all possible orie
tions ~see Fig. 2!.

III. MODULATED ROTATING CONVECTION:
SPIRALS AND TARGETS

We now turn to the specific problem of rotating conve
tion with periodically modulated rotation. A thin layer o
fluid of height d is heated from below and bounded abo
and below by a rigid plate, which is rotated with an angu
velocity V5V0(11d cosvt). For d50 we recover the
well-studied case of rotating convection@1–7,10,11,14#. For
d!1 but nonzero, a nontrivial base flow is induced by t
periodic motion of the rigid plates. This flow advects pertu
bations leading to thermal instabilities in such a way as
affect their growth rate. Indeed, far from the axis of rotatio
the onset of the thermal instability is dependent on the
entation of the periodic-roll perturbations with respect to t
base flow in a manner analogous to the linear operator in
~1! as discussed below~cf. @15#!. Closer to the axis of rota-
tion, the curvature of the base flow becomes significant an
straight-roll approximation is not a good one.

The dynamics can be described by the Boussinesq fl
equations in a frame rotating at the mean angular velocityV0
@1–5#. Due to the temporal modulation of the angular velo

FIG. 1. Linear stability diagram of rolls with orientationu in
Eqs. ~3!,~4! with respect to rolls at a relative orientation ofbKL .
Here m50.2. Numerical results are given by the solid symbo
triangles forg53 and circles forg52.
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ity, the rigid boundary conditions at the top and bottom i
ply that the azimuthal velocity component oscillates in tim
with the plates,

uu5Re~dV0reivt!. ~11!

This condition induces an azimuthal shear flow, the stren
of which grows with distance from the axis of rotation. If th
flow is restricted to a finite geometry, Coriolis forces acti
on this flow can be balanced by the radial pressure grad
as with the centrifugal force.

Far from the axis of rotation the nondimensionalized flo
takes the form

ûu5d Prtr ReS sinhkz2sinhk~z21!

2 sinhk
ei Pr vtD , ~12!

FIG. 2. Stabilization of rolls in the regime of domain cha
arising from the Ku¨ppers-Lortz instability.~a! A typical patchwork
pattern of domain chaos, where the angle between patchesbKL

545 °, andg52.0, m50.2, a50.0. ~b! For the same values of th
parameters witha250.15, rolls are stabilized.
04621
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where the plates are located atz50,1, k5Av/2(11 i ) and

ûu5uu

d

k
, Pr5

n

k
, t5

2V0d2

n
. ~13!

Here the modulation frequencyv has been nondimensiona
ized with respect to the viscous diffusion time. Note that E
~12! satisfies the equation of continuity“•u50.

Thermal instabilities arising from the imposed tempe
ture gradient are advected by Eq.~12! and hence parametri
cally forced with frequency Prv. To model the change in
their growth rates within the SH equation~1! we consider the
region away from the center of rotation where curvature
fects can be neglected. There, to a good approximation
analysis of Sec. II should apply locally with the anisotro
director n̂ being given by the local orientation of the osc
lating base flow,n̂5êu . This is based on the observation th
near onset the dynamics of the instability is slow compa
with the period of the oscillating shear flow for any fini
rotation rate, which allows an averaging over the oscil
tions. Since the forcing is invariant under the transformat
d→2d, t→t1p/Prv the base flow affects the growt
rate of thermal instabilities through mean-squared contri
tions ~proportional tod2!. Based on Eq.~12! we therefore
choose

a25d2r 2, n̂5êu . ~14!

We note that the scaling of the anisotropy~14! as linear in
the distance from the axis of rotation is correct only far fro
the axis itself. However, we retain this simplified form for a
r and hope to extract qualitatively correct results. In fa
simulations with other polynomial dependencies have
vealed that only the monotonicity of the function is impo
tant in determining qualitative features of the patterns.

To model the circular container of the experiments we u
a circular ramp in the control parameterm, maintaining the
region surrounding the circle at a subcritical value, there
suppressing the convection amplitude. In full Navier-Stok
simulations this procedure has been used successfull
comparison with experiment@16#. Simulations reveal a wide
variety of spiral patterns as well as targets. For smalld,
where we expect the weakly nonlinear theory for perio
rolls to be valid sufficiently far from the core of the spira
we are able to predict the number of spiral arms with reas
able accuracy~cf. Figs. 3 and 4!. Such an analysis can b
understood from Fig. 1. For a fixed rotation rateg, the
strength of anisotropya increases with distance from th
core of the spiral. There is thus a region in the vicinity of t
core where no rolls are stable, and rolls of a given orientat
u* become stable first at a distancer * as determined by
condition~10!. The projection of the local wave vector of th
spiral onto the perimeter of the critical circle with radiusr *
is given byq sinu* . The number of arms of the spiral is the
given by the circumference divided by the wavelength as
ciated with the projected wave vector,

N5r * q sinu* . ~15!
9-3
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FIG. 3. Representative patterns:~a! KL state with d50.0; ~b!
six-armed spiral ford50.0005 Eq.~15! predicts six arms in this
case;~c! Target pattern ford50.001. For all threeg52.0, m50.2,
and the system sizeL572.
04621
FIG. 4. A stable spiral with a chaotic core. The system size
L5144 with g52.0, m50.2, andd250.0001. Note that Eq.~15!
predicts 14 arms. The core dynamics occur on a fast time scale
respect to the slow, solid-body rotation of the outer spiral. Fo
movie see Ref.@27#.
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ROTATING CONVECTION IN AN ANISOTROPIC SYSTEM PHYSICAL REVIEW E65 046219
Spirals or targets can be generated for the same param
values given different initial conditions. In general, an init
straight-roll pattern will result in a target for sufficientl
large d, whereas disordered initial conditions generica
yield spirals, even for strong anisotropy.

Interestingly, the orientation-selection mechanism giv
by Eq. ~15! predicts the possibility of a large region su
rounding the core within which no rolls are stable in t
context of the weakly nonlinear theory. If the anisotropy
sufficiently weak, one should see a disordered region of
main chaos, bounded by a stable spiral, given a large eno
system. Such a pattern is shown in Fig. 4. A movie of th
dynamics is available—see Ref.@27#.

IV. CONCLUSION

Spirals and targets arising in Rayleigh-Be´nard convection
have been the subject of much theory and experime
work, @7,4,11,17–19#. Target patterns in low-Prandtl-numbe
convection are a consequence of horizontal, thermal gr
ents at the sidewalls of a cylindrical container, which tend
align rolls parallel to the walls@19#. Even with sidewall forc-
ing, the targets become unstable to straight rolls relativ
close to threshold. In rotating convection, the target patte
arising from such sidewall forcing undergo a mean drift@11#
due to the breaking of reflection symmetry by the appl
rotation. However, in the case of rotating convection with
modulated rotation rate, the chiral patterns are not a co
quence of the system geometry, but rather are induced b
isotropy-breaking shear flow, which acts azimuthally. W
have shown that these patterns are stable in regimes w
one would see spatiotemporal chaos in the absence of m
lation. Our analysis indicates that the shear flow acts to
bilize rolls within a band of stable orientations with respe
to the azimuthal flow itself. This leads naturally to a chir
pattern.

The qualitative agreement between the types of patte
observed in experiment@6# and those studied here makes t
selection mechanism described in Sec. III plausible. Spi
and targets arise through the interaction of the destabiliz
process responsible for the KL instability and the stabiliz
effect of the azimuthal mean flow. Quantitative comparis
of the dependence of the pattern behavior on the redu
Rayleigh number, rotation rate, and amplitude and freque
of the modulation with experiment is, however, not possi
within the framework of Eq.~1!. However, qualitatively the
genericness of the appearance of spiral patterns under m
lated rotation with disordered initial conditions~KL state!
e
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seems to hold both under experimental conditions and h
Targets, on the other hand, must be generated with care
then persist as stable patterns over a wide range of param
values.

The target patterns observed in@6# travel inward radially,
collapsing periodically at the center. The origin of this dr
has not been identified yet. One possibility is that the tim
periodic component of the Coriolis force acting on the tim
periodic azimuthal flow generates a radial flow with a stea
component, which would advect the axisymmetric roll p
tern @20,21#. Another possibility is that the drift is due to
mismatch between the wave number selected by the um
cus @22# and that selected by the container sidewall@23,24#.
The competing selected wave numbers set up a wave num
gradient that induces a drift of the pattern@25,26#. It should
be possible to distinguish between these two mechanism
comparing the dynamics in systems of different aspect ra
For larger systems, the wave number gradient induced by
incompatibility of the selected wave numbers would
weakened, while the effective strength of the radial flo
would naturally be stronger due to the greater Coriolis fo
at larger radii. Experiments in such larger systems wo
also be of interest in view of the prediction that in su
systems the core of the spirals would exhibit chaotic dyna
ics of the Küppers-Lortz type.

In our simulations of Eq.~1! no radial drift of the concen-
tric rolls was found. This is not unexpected since in the a
sence of the chiral-symmetry-breaking term proportional
g Eq. ~1! is variational and persistent dynamics are ruled o
To obtain drift the variational character of the system has
be broken to a sufficient degree. This may require mu
larger rotation ratesg or the introduction of additional non
variational terms. We have not pursued this further sin
simulations of extensions of Eq.~1! with possibly also modi-
fied boundary conditions would not allow any quantitati
comparison with experiments and would therefore be of li
ited use in identifying the dominant mechanism respons
for the drift.
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